On the long-time stability of the implicit Euler scheme for the 2D space-periodic Navier-Stokes equations

نویسنده

  • Florentina Tone
چکیده

In this paper we study the stability for all positive time of the fully implicit Euler scheme for the two-dimensional Navier–Stokes equations. More precisely, we consider the time discretization scheme and with the aid of the discrete Gronwall lemma and the discrete uniform Gronwall lemma we prove that the numerical scheme is stable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long Time Stability of a Classical Efficient Scheme for Two-dimensional Navier-Stokes Equations

We prove that a popular classical implicit-explicit scheme for the 2D incompressible Navier–Stokes equations that treats the viscous term implicitly while the nonlinear advection term explicitly is long time stable provided that the time step is sufficiently small in the case with periodic boundary conditions. The long time stability in the L2 and H1 norms further leads to the convergence of th...

متن کامل

The Euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes equations with smooth or non-smooth initial data

This paper considers the stability and convergence results for the Euler implicit/explicit scheme applied to the spatially discretized twodimensional (2D) time-dependent Navier-Stokes equations. A Galerkin finite element spatial discretization is assumed, and the temporal treatment is implicit/explict scheme, which is implicit for the linear terms and explicit for the nonlinear term. Here the s...

متن کامل

A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).

This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...

متن کامل

Comparison of three different numerical schemes for 2D steady incompressible lid-driven cavity flow

In this study, a numerical solution of 2D steady incompressible lid-driven cavity flow is presented. Three different numerical schemes were employed to make a comparison on the practicality of the methods. An alternating direction implicit scheme for the vorticity-stream function formulation, explicit and implicit schemes for the primitive variable formulation of governing Navier-Stokes equatio...

متن کامل

Numerical Analysis and Scientific Computing Preprint Seria Unconditional long-time stability of a velocity-vorticity method for the 2D Navier-Stokes equations

We prove unconditional long-time stability for a particular velocity-vorticity discretization of the 2D Navier-Stokes equations. The scheme begins with a formulation that uses the Lamb vector to couple the usual velocity-pressure system to the vorticity dynamics equation, and then discretizes with the finite element method in space and implicit-explicit BDF2 in time, with the vorticity equation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2006